Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster
نویسندگان
چکیده
BACKGROUND Although zinc oxide nanoparticles (ZnO NPs) have been widely used, there has been an increasing number of reports on the toxicity of ZnO NPs. However, study on the underlying mechanisms under in vivo conditions is insufficient. METHODS In this study, we investigated the toxicological profiles of ZnO NPs in MRC5 human lung fibroblasts in vitro and in an in vivo model using the fruit fly Drosophila melanogaster. A comprehensive study was conducted to evaluate the uptake, cytotoxicity, reactive oxygen species (ROS) formation, gene expression profiling and genotoxicity induced by ZnO NPs. RESULTS For in vitro toxicity, the results showed that there was a significant release of extracellular lactate dehydrogenase and decreased cell viability in ZnO NP-treated MRC5 lung cells, indicating cellular damage and cytotoxicity. Generation of ROS was observed to be related to significant expression of DNA Damage Inducible Transcript (DDIT3) and endoplasmic reticulum (ER) to nucleus signaling 1 (ERN1) genes, which are ER stress-related genes. Oxidative stress induced DNA damage was further verified by a significant release of DNA oxidation product, 8-hydroxydeoxyguanosine (8-OHdG), as well as by the Comet assay. For the in vivo study using the fruit fly D. melanogaster as a model, significant toxicity was observed in F1 progenies upon ingestion of ZnO NPs. ZnO NPs induced significant decrease in the egg-to-adult viability of the flies. We further showed that the decreased viability is closely associated with ROS induction by ZnO NPs. Removal of one copy of the D. melanogaster Nrf2 alleles further decreased the ZnO NPs-induced lethality due to increased production of ROS, indicating that nuclear factor E2-related factor 2 (Nrf2) plays important role in ZnO NPs-mediated ROS production. CONCLUSION The present study suggests that ZnO NPs induced significant oxidative stress-related cytotoxicity and genotoxicity in human lung fibroblasts in vitro and in D. melanogaster in vivo. More extensive studies would be needed to verify the safety issues related to increased usage of ZnO NPs by consumers.
منابع مشابه
Oral exposure to zinc oxide nanoparticles induced oxidative damage, inflammation and genotoxicity in rat’s lung
This study aimed to investigate the toxicity of oral ZnONPs on the rat's lung. Rats were divided into four groups each of ten rats. Groups I and II were treated orally with 40 and 100 mg/kg ZnONPs for 24 hrs. Groups III and IV received daily 40 and 100 mg/kg ZnONPs orally for 1 week. Ten untreated rats were used as control. Oral administration of ZnONPs induced eosinophilia and lymphocytes infi...
متن کاملCytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles
Traces of zinc oxide nanoparticles (ZnO NPs) used may be found in the liver and kidney. The aim of this study is to determine the optimal viability assay for using with ZnO NPs and to assess their toxicity to human hepatocyte (L02) and human embryonic kidney (HEK293) cells. Cellular morphology, mitochondrial function (MTT assay), and oxidative stress markers (malondialdehyde, glutathione (GSH) ...
متن کاملRoute of administration induced in vivo effects and toxicity responses of Zinc Oxide nanorods at molecular and genetic levels
Zinc oxide (ZnO) nanoparticles have received growing attention for several biomedical applications. Nanoparticles proposed for these applications possess the potential to interact with biological components such as the blood, cells/ tissues following their administration into the body. Hence we carried out in vivo investigations in Swiss Albino Mice to understand the interaction of ZnO nanorods...
متن کاملComparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles
Nanoparticles (NPs) of zinc oxide (ZnO) and titanium dioxide (TiO2) are receiving increasing attention due to their widespread applications. The aim of this study was to evaluate the toxic effect of ZnO and TiO2 NPs at different concentrations (50, 100, 250 and 500 ppm) and compare them with their respective salts using a battery of cytotoxicity, and genotoxicity parameters. To evaluate cytotox...
متن کاملRoute of administration induced in vivo effects and toxicity responses of Zinc Oxide nanorods at molecular and genetic levels
Zinc oxide (ZnO) nanoparticles have received growing attention for several biomedical applications. Nanoparticles proposed for these applications possess the potential to interact with biological components such as the blood, cells/ tissues following their administration into the body. Hence we carried out in vivo investigations in Swiss Albino Mice to understand the interaction of ZnO nanorods...
متن کامل